Aquatic Informatics, Inc

Data Validation and Correction Tools for the Real Time Water Quality Monitoring Industry

November 8th, 2004 Portland, Oregon

Al Customers

Ministry of Water, Land & Air Protection

Environnement Canada Environment Canada

Ministry of Sustainable Resource Management

Al Scientific Advisory Board

- Paul Whitfield –Environment Canada
- Dr. Dan Moore UBC Hyrdology
- Dr. William Hsieh UBC Climate Group
- Dr. John Richardson UBC Stream Ecology
- Dr. Sean Fleming UBC Hydrogeology
- Dr. Harold Davis UBC Engineering Physics
- Ed Quilty, Ph.D Cand. Aquatic Informatics
- Andre Viljoen Avteq Technology
- Joel Bellenson Biocad

Al has the only tool today that costeffectively manages data for the unique challenges of the real time water quality monitoring industry.

Al Tools

- Detect anomalous data.
- Improved efficiency
- Validated data for further analysis.
- Correct data using local knowledge.
- Real-time applications or warehoused data.

Al Customer Benefits

- 1. Reduction of errors
- 2. Confidence in data
- 3. Feedback into Monitoring Effectiveness
- 4. Better Information = Better Decisions
 - Improved Management of Industry
 - Public Safety
 - Improved Habitat
 - Proper Infrastructure

Al Roadmap

High Frequency Hydrologic Data Validation and Correction

Peter Hudson

Senior Project Scientist

Data Management Flow Chart:

Data Management Flow Chart: Raw Data

Raw Data: Outliers

Raw Data: Calibration and Drift

Raw Data: Gaps

Raw Data: Everything

Data Management Flow Chart: Sup. Data

Supplementary Data: Neighbouring Stations

Supplementary Data: Paired Watersheds

Supplementary Data: Meteorological Data

Supplementary Data: Historical Data

Supplementary Data: Grab Samples

Data Management Flow Chart: Modeling

Modeling

Multiple Regression & Robust Regression

Artificial Neural Networks

Auto-regressive Moving average Processes

Modeling: Multiple Regression

- Coupled Watersheds / Multiple Stations
 - Identify Areas of *good* data
 - •Maximize linear correlation by adjusting signal phase to account for physical factors (travel time, solar radiation, precipitation) and biological factors (photosynthesis and cellular decomposition).
 - Build a multiple regression model

Modeling: Multiple Regression Lets do it...

Modeling: Artificial Neural Networks

Modeling: Artificial Neural Networks

- Identify Areas of *good* data
- •Maximize scatter density by adjusting signal phase to account for physical (travel time, solar radiation, precipitation) and biological (photosynthesis and cellular decomposition) factors.
- Build a Neural Network model

Modeling: Artificial Neural Networks

Let's do it...

Modeling: Auto-Regressive Moving Average Processes

"... my publisher told me that for every equation I included I would half my book sales."

$$y_n = \sum_{k=1}^{P} a_k y_{n-k} + \sum_{m=0}^{Q} b_m x_{n-m} + \dots + c$$

Modeling: Auto-Regressive Moving Average Processes

Data Management Flow Chart: Data Validation

Data Validation: Validation Statistic (Conceptually)

- Identify some *good* 'warm up' data
- Calculate the expected value for the next data point
- Compare what the model predicted with what was actually measured
- Compute a validation statistic
- Step forward and repeat

Data Validation: Validation Statistic (Mathematically)

(See Validation Statistic White Paper)

Data Validation: Validation Statistic

Let's Do it...

Data Management Flow Chart: Data Correction

Data Correction: Model Residual Normalization

•Residual – White Noise Colouration:

Model Residual Normalization: Residual

Residual Colouration Correction

Let's do it...

Data Correction: Gap Filling Methodology

Data Correction: Gap Filling Control

Data Correction: Gap Filling

Let's Do it...

Data Management Flow Chart: Data Output

Data Output: Validated / Corrected Data

```
Untitled - Notepad
File Edit Format View Help
Station: Lang Creek at Hatchery
Parameter: Temperture
Units: *C
Start Date & Time: March-15-1999 15:47:13
End Date & Time: July-01-2000 14:32:13
Time Stamp Interval: 00:15:00
Validation & Correction Perfromed By: Touraj Farahmand
Validation & Correction Perfromed On: October-17-2004
Validation Stat Algorithm Parameters
nV = 150:
nT = 300:
MES = 5:
MT = Linear;
Date & Time
                          Raw Signal,
                                            Val Stat.
                                                                      Correction,
                                                                                        Signal Out,
                                                                                                          Mod 95% Conf.
March-15-1999 15:47:13
                                                                                        12.3
March-15-1999 16:02:13 12.3
                                            0.23
March-15-1999 16:17:13 12.3
March-15-1999 16:32:13 12.4
March-15-1999 16:47:13
March-15-1999 17:02:13
March-15-1999 17:17:13
March-15-1999 17:32:13
March-15-1999 17:47:13 12.3
                                                                      12.33
March-15-1999 18:47:13
March-15-1999 19:02:13
March-15-1999 19:17:13
                                            0.12
March-15-1999 19:32:13
                                                                                        12.3
                                                                                        12.3
March-15-1999 20:02:13
March-15-1999 20:17:13
                                                                                        12.2
March-15-1999 20:32:13
                                                                                        12.2
                                                                      -3.1
                                                                                        12.2
                                                                      -3.1
                                                                      -3.1
March-15-1999 21:47:13
March-15-1999 21:02:13
                                                                      -3.1
March-15-1999 22:17:13 15.3
                                                                      -3.1
March-15-1999 22:32:13 12.3
March-15-1999 22:47:13 12.3
```

Al Roadmap

Peter Hudson
pete@aquaticinformatics.com